
Testing for Normality



For each mean and standard deviation combination a theoretical 
normal distribution can be determined. This distribution is based 
on the proportions shown below.



This theoretical normal distribution can then be compared to the 
actual distribution of the data.

Are the actual data statistically different than the computed 
normal curve?

Theoretical normal 
distribution calculated
from a mean of 66.51 and a 
standard deviation of 
18.265. 

The actual data 
distribution that has a 
mean of 66.51 and a 
standard deviation of 
18.265. 



There are several methods of assessing whether data are 
normally distributed or not. They fall into two broad categories: 
graphical and statistical. The some common techniques are:

Graphical
• Q-Q probability plots
• Cumulative frequency (P-P) plots

Statistical
• W/S test 
• Jarque-Bera test 
• Shapiro-Wilks test
• Kolmogorov-Smirnov test
• D’Agostino test



Q-Q plots display the observed values against normally distributed 
data (represented by the line).

Normally distributed data fall along the line.



Graphical methods are typically not very useful when the sample size is 
small. This is a histogram of the last example. These data do not ‘look’ 
normal, but they are not statistically different than normal.



Tests of Normality

.110 1048 .000 .931 1048 .000Age
Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnova Shapiro-Wilk

Lil liefors Significance Correctiona. 

Tests of Normality

.283 149 .000 .463 149 .000TOTAL_VALU
Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnova Shapiro-Wilk

Lil liefors Significance Correctiona. 

Tests of Normality

.071 100 .200* .985 100 .333Z100
Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnova Shapiro-Wilk

This is  a lower bound of the true s ignificance.*. 

Lil liefors Significance Correctiona. 



Statistical tests for normality are more precise since actual 
probabilities are calculated.

Tests for normality calculate the probability that the sample was 
drawn from a normal population.

The hypotheses used are:

Ho: The sample data are not significantly different than a normal 
population.

Ha: The sample data are significantly different than a normal 
population.



When testing for normality:

• Probabilities > 0.05 indicate that the data are normal.

• Probabilities < 0.05 indicate that the data are NOT normal.



Non-Normally Distributed Data

.142 72 .001 .841 72 .000Average PM10
Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnov a Shapiro-Wilk

Lilliefors Significance Correctiona. 

Normally Distributed Data

.069 72 .200* .988 72 .721Asthma Cases
Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnova Shapiro-Wilk

This is  a lower bound of the true s ignificance.*. 

Lil liefors Significance Correctiona. 

In SPSS output above the probabilities are greater than 0.05 (the typical alpha 
level), so we accept Ho… these data are not different from normal.

In the SPSS output above the probabilities are less than 0.05 (the typical alpha 
level), so we reject Ho… these data are significantly different from normal.



Simple Tests for Normality



W/S Test for Normality

• A fairly simple test that requires only the sample standard deviation and 
the data range.

• Should not be confused with the Shapiro-Wilk test.

• Based on the q statistic, which is the ‘studentized’ (meaning t 
distribution) range, or the range expressed in standard deviation units. 

where q is the test statistic, w is the range of the data and s is the standard 
deviation.

• The test statistic q (Kanji 1994, table 14) is often reported as u in the 
literature.

𝑞𝑞 =
𝑤𝑤
𝑠𝑠



Range constant, 
SD changes

Range changes, 
SD constant



Standard deviation (s) = 0.624
Range (w) = 2.53
n = 27

The W/S test uses a critical range. If the calculated 
value falls within the range, then accept Ho. If the 
calculated value falls outside the range then reject Ho.

Since 3.34 < q=4.05 < 4.71, we accept Ho.

Village Pop Density
Ajuno 5.11
Angahuan 5.15
Arantepacua 5.00
Aranza 4.13
Charapan 5.10
Cheran 5.22
Cocucho 5.04
Comachuen 5.25
Corupo 4.53
Ihuatzio 5.74
Janitzio 6.63
Jaracuaro 5.73
Nahuatzen 4.77
Nurio 6.06
Paracho 4.82
Patzcuaro 4.98
Pichataro 5.36
Pomacuaran 4.96
Quinceo 5.94
Quiroga 5.01
San Felipe 4.10
San Lorenzo 4.69
Sevina 4.97
Tingambato 5.01
Turicuaro 6.19
Tzintzuntzan 4.67
Urapicho 6.30

𝑞𝑞 =
𝑤𝑤
𝑠𝑠

𝑞𝑞 =
2.53

0.624
= 4.05

𝑞𝑞𝑐𝑐 = 3.34 𝑡𝑡𝑡𝑡 4.71



Since n = 27 is not on 
the table, we will use 
the next LOWER value.



Since we have a critical range, it is difficult to determine a 
probability range for our results. Therefore we simply state our 
alpha level.

The sample data set is not significantly different than normal (q4.05, 
p > 0.05).



D’Agostino Test

• A very powerful test for departures from normality.

• Based on the D statistic, which gives an upper and lower critical
value.

where D is the test statistic, SS is the sum of squares of the data 
and n is the sample size, and i is the order or rank of observation
x. The df for this test is n (sample size).

• First the data are ordered from smallest to largest or largest to
smallest.

𝐷𝐷 =
𝑇𝑇
𝑛𝑛3𝑆𝑆𝑆𝑆

𝑇𝑇 = � 𝑖𝑖 −
𝑛𝑛 + 1

2
𝑥𝑥𝑖𝑖



Village Pop Density i Deviates2

San Felipe 4.10 1 1.2218
Aranza 4.13 2 1.1505
Corupo 4.53 3 0.4582
Tzintzuntzan 4.67 4 0.2871
San Lorenzo 4.69 5 0.2583
Nahuatzen 4.77 6 0.1858
Paracho 4.82 7 0.1441
Pomacuaran 4.96 8 0.0604
Sevina 4.97 9 0.0538
Patzcuaro 4.98 10 0.0509
Arantepacua 5.00 11 0.0401
Tingambato 5.01 12 0.0359
Quiroga 5.01 13 0.0354
Cocucho 5.04 14 0.0250
Charapan 5.10 15 0.0111
Ajuno 5.11 16 0.0090
Angahuan 5.15 17 0.0026
Cheran 5.22 18 0.0003
Comachuen 5.25 19 0.0027
Pichataro 5.36 20 0.0253
Jaracuaro 5.73 21 0.2825
Ihuatzio 5.74 22 0.2874
Quinceo 5.94 23 0.5456
Nurio 6.06 24 0.7398
Turicuaro 6.19 25 0.9697
Urapicho 6.30 26 1.2062
Janitzio 6.63 27 2.0269

Mean = 5.2 SS = 10.12

𝑥̅𝑥 = 5.2 SS =10.12     df = 27

𝑛𝑛 + 1
2

=
27 + 1

2
= 14

4.13 − 5.2 2 = 1.1505

𝑇𝑇 = � 𝑖𝑖 − 14 𝑥𝑥𝑖𝑖

𝑇𝑇 = 1 − 14 4.10 + 2 − 14 4.13 … + 27 − 14 6.63

𝑇𝑇 = 122.04

𝐷𝐷 =
122.04

(273)(10.12)
=

122.04
446.31

= 0.2734

𝐷𝐷𝑐𝑐 = 0.2647 𝑡𝑡𝑡𝑡 0.2866

0.2647 > 𝐷𝐷 = 0.2734 > 0.2866 Accept Ho.

The village population density is not significantly 
different than normal (D0.2243, p > 0.05).



Use the next lower
n on the table if the
sample size is NOT
listed.



This is the ‘middle’ of the data set.
𝑛𝑛 + 1

2
=

17 + 1
2

= 9

𝑇𝑇 = ��𝑖𝑖 − 9)𝑋𝑋𝑖𝑖

This is the observation’s distance from the middle.

This is the observation, and is used to ‘weight’ the result 
based on the size of the observation and its distance.

Breaking down the equations:

𝐷𝐷 =
𝑇𝑇
𝑛𝑛3𝑆𝑆𝑆𝑆

This represents which tail is more pronounced (- for left, + for right).

This adjusts for sample size like this:

This is the dataset’s total squared variation.

This transforms the squared values from SS.



Village Pop Density i Deviates2 T
San Felipe 4.10 1 1.2218 -53.26
Aranza 4.13 2 1.1505 -49.56
Corupo 4.53 3 0.4582 -49.78
Tzintzuntzan 4.67 4 0.2871 -46.67
San Lorenzo 4.69 5 0.2583 -42.25
Nahuatzen 4.77 6 0.1858 -38.17
Paracho 4.82 7 0.1441 -33.76
Pomacuaran 4.96 8 0.0604 -29.74
Sevina 4.97 9 0.0538 -24.85
Patzcuaro 4.98 10 0.0509 -19.91
Arantepacua 5.00 11 0.0401 -15.01
Tingambato 5.01 12 0.0359 -10.03
Quiroga 5.01 13 0.0354 -5.01
Cocucho 5.04 14 0.0250 0.00
Charapan 5.10 15 0.0111 5.10
Ajuno 5.11 16 0.0090 10.21
Angahuan 5.15 17 0.0026 15.45
Cheran 5.22 18 0.0003 20.88
Comachuen 5.25 19 0.0027 26.27
Pichataro 5.36 20 0.0253 32.17
Jaracuaro 5.73 21 0.2825 40.14
Ihuatzio 5.74 22 0.2874 45.91
Quinceo 5.94 23 0.5456 53.47
Nurio 6.06 24 0.7398 60.63
Turicuaro 6.19 25 0.9697 68.06
Urapicho 6.30 26 1.2062 75.61
Janitzio 6.63 27 2.0269 86.14

-418.00

540.04

These data are more heavily weighted in 
the positive (right) tail…

but not enough to conclude the data are 
different than normal.

540.04 − 418.00 = 122.04



Normality tests using various random normal sample sizes:

Notice that as the sample size increases, the probabilities decrease. In other 
words, it gets harder to meet the normality assumption as the sample size 
increases since even small departures from normality are detected.

Sample 
Size

JB
Prob

10 0.6667
50 0.5649

100 0.5357
200 0.5106
500 0.4942

1000 0.4898
2000 0.4823
5000 0.4534
7000 0.3973

10000 0.2948



Normality Test Statistic Probability Results

W/S 4.05 > 0.05 Normal

Jarque-Bera 1.209 0.5463 Normal

D’Agostino 0.2734 > 0.05 Normal

Shapiro-Wilk 0.9428 0.1429 Normal

Kolmogorov-Smirnov 1.73 0.0367 Not-normal

Anderson-Darling 0.7636 0.0412 Not-normal

Lilliefors 0.1732 0.0367 Not-normal

Different normality tests produce different  probabilities. This is due to where in 
the distribution (central, tails) or what moment (skewness, kurtosis) they are 
examining.



W/S or studentized range (q):
• Simple, very good for symmetrical distributions and short tails.
• Very bad with asymmetry.

Shapiro Wilk (W):
• Fairly powerful omnibus test. Not good with small samples or discrete data.
• Good power with symmetrical, short and long tails. Good with asymmetry.

Jarque-Bera (JB):
• Good with symmetric and long-tailed distributions.
• Less powerful with asymmetry, and poor power with bimodal data.

D’Agostino (D or Y):
• Good with symmetric and very good with long-tailed distributions.
• Less powerful with asymmetry.

Anderson-Darling (A):
• Similar in power to Shapiro-Wilk but has less power with asymmetry.
• Works well with discrete data.

Distance tests (Kolmogorov-Smirnov, Lillifors, Chi2):
• All tend to have lower power. Data have to be very non-normal to reject Ho.
• These tests can outperform other tests when using discrete or grouped data.



When is non-normality a problem?

• Normality can be a problem when the sample size is small (< 50).

• Highly skewed data create problems.

• Highly leptokurtic data are problematic, but not as much as
skewed data.

• Normality becomes a serious concern when there is “activity” in
the tails of the data set.

• Outliers are a problem.

• “Clumps” of data in the tails are worse.



SPSS Normality Tests

Analyze > Descriptive Statistics > Explore, then Plots > Normality Tests with 
Plots.

Available tests: Kolmogorov-Smirnov and Shapiro-Wilk.

PAST Normality Tests

Univariate > Normality Tests

Available tests: Shapiro-Wilk, Anderson-Darling, Lilliefors, Jarque-Bera.



Final Words Concerning Normality Testing:

1. Since it IS a test, state a null and alternate hypothesis.

2. If you perform a normality test, do not ignore the results.

3. If the data are not normal, use non-parametric tests.

4. If the data are normal, use parametric tests.

AND MOST IMPORTANTLY:

5. If you have groups of data, you MUST test each group for 
normality.



df = n

Obs

15

7

6

6

5

5

5

4

4

3

Ho: The suspected outlier is not different than the sample distribution. 
Ha: The suspected outlier is different than the sample distribution. 

The critical value for an n = 10 from Grubbs modified t table (G table) at 
an α = 0.05 is 2.18. 

Since 2.671 > 2.18, reject Ho. 

The suspected outlier is from a significantly different sample population 
(GMax, 2.671, p < 0.01). 

𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑥𝑥𝑛𝑛 − 𝑥̅𝑥
𝑠𝑠

𝑜𝑜𝑜𝑜 𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑥̅𝑥 − 𝑥𝑥𝑛𝑛
𝑠𝑠

Testing for Outliers

Grubbs Test

𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀 =
15 − 6

3.37 = 2.671





df = n

where xn is the suspected outlier, xn-1 is the next ranked observation, and x1 is the last ranked 
observation.

Obs

15

7

6

6

5

5

5

4

4

3

Ho: The suspected outlier is not different than the sample distribution. 
Ha: The suspected outlier is different than the sample distribution. 

The critical value for an n = 10 from Verma and Quiroz-Ruiz expanded 
Dixon table at an α = 0.05 is 0.4122. Since 0.6667 > 0.4122, reject Ho.

The suspected outlier is from a significantly different sample 
population (Q 0.6667, p < 0.005).

𝑄𝑄 =
𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛−1
𝑥𝑥𝑛𝑛 − 𝑥𝑥1

Dixon Test

𝑄𝑄 =
15 − 7
15 − 3 = 0.6667





These tests have several requirements: 

1) The data are from a normal distribution 
2) There are not multiple outliers (3+), 
3) The data are sorted with the suspected outlier first. 

If 2 observations are suspected as being outliers and both lie on the same 
side of the mean, this test can be performed again after removing the first 
outlier from the data set.

Caution must be used when removing outliers. Only remove outliers if you 
suspect the value was caused by an error of some sort, or if you have 
evidence that the value truly belongs to a different population.

If you have a small sample size, extreme caution should be used when 
removing any data. 
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